Müller-BBM GmbH Robert-Koch-Str. 11 82152 Planegg bei München

Telephone +49(89)85602 0 Telefax +49(89)85602 111

www.MuellerBBM.com

M. Eng. Philipp Meistring Telephone +49(89)85602 228 Philipp.Meistring@mbbm.com

2015-03-05 M112237/01 MSG/JRE

Consumer vacuum breast-pumps

Determination of the sound power level of the noise emission according to ISO 3741

Test report No. M112237/01

Client:

Consultant:

Date of report (revised version):

Delivery date of the test objects:

Date of measurements:

Total number of pages:

Ardo medical AG Gewerbestraße 19 6314 Unterägeri Switzerland

M. Eng. Philipp Meistring

05th March 2015

16th May 2014 / 26th January 2015

23rd May 2014 / 17th February 2015

43 pages in total, thereof

6 pages of text,

16 pages of Appendix A,

- 11 pages of Appendix B,
- 6 pages of Appendix C and
- 4 pages of Appendix D.

Certified quality management system according to ISO 9001 Accredited testing laboratory according to ISO/IEC 17025 Müller-BBM GmbH HRB Munich 86143 VAT Reg. No. DE812167190

Managing directors: Joachim Bittner, Walter Grotz, Dr. Carl-Christian Hantschk, Stefan Schierer, Elmar Schröder, Norbert Suritsch

Table of contents

1	Situation and task	3
2	References	3
3	Test objects and operating conditions	3
4	Execution of the tests	4
5	Evaluation	4
6	Test results	5
7	Remarks	6

Appendix A: Test certificates Appendix B: Pictures Appendix C: Result tables Appendix D: Test method

1 Situation and task

On behalf of Ardo medical AG, 6314 Unterägeri, Switzerland, the sound power level of the noise radiated by consumer vacuum breast-pumps was to be determined by measurements in the reverberation room acc. to DIN EN ISO 3741 [2]. The tests were to be carried out for nine pumps (two single pumps, two double pumps and five pumps with single and double mode).

In the present test report, the execution of the tests and the test results will be described. The revised version of 05th March 2015 includes an additional test series that was executed in February 2015.

2 References

- [1] DIN EN ISO 3740: Acoustics Determination of sound power levels of noise sources Guidelines for the use of basic standards. 2001-03
- [2] DIN EN ISO 3741: Acoustics Determination of sound power levels and sound energy levels of noise sources using sound pressure – Precision methods for reverberation test rooms. 2011-01
- [3] DIN EN ISO 3382-2: Acoustics Measurement of room acoustic parameters Part 2: Reverberation time in ordinary rooms. 2008-09

3 Test objects and operating conditions

Several different types of consumer vacuum breast-pumps of various manufacturers were examined. The test objects were prescribed and delivered to the test laboratory by the client. According to the information of the client, the test objects were purchased in the usual commercial way:

- in May 2014 (pumps of the test series of 23rd May 2014 resp.
- in January 2015 (pump of the test series of 17th February 2015.

The pumps can be classified in single and double pumps according to their operating modes or their number of simultaneously operable suction bottles. In several pumps both operating modes are alternatively available. Other operating parameters can be set according to the respective pump, i. e. vacuum performance, cycle frequency and pump mode (stimulation mode / suction mode). For the tests, all pumps were operated in suction mode, each at its maximum vacuum performance. As far as possible, all pumps were set to the same cycle frequency, i. e. 45 min⁻¹...56 min⁻¹. For the power supply during the test, the mains adapter delivered with each pump was used.

The operating conditions for the tests were also prescribed by the client or defined by the test laboratory in accordance with the client before the tests. The operating conditions determined for the tests (full load & cycle frequency 45 min⁻¹...56 min⁻¹) reflect the actual use in practice according to the client.

Table 1 gives an overview of the pumps tested. In the test certificates in Appendix A, the operating conditions during measurements are indicated. Appendix B shows photos of the pumps tested.

The arrangement of the test objects in the reverberation room was set up by employees of the test laboratory.

For the tests, the breast-pumps were connected to the suction bottles and funnels. In order to create the necessary vacuum, the suction funnels of the bottles were sealed by means of an artificial breast. The artificial breast was fixed to the suction funnel by an adhesive tape.

For the reverberation room test, the complete breast-pump setup was placed directly onto the reflecting reverberation room floor according to DIN EN ISO 3741 [2]. For all tests the same position on the reverberation room floor was used. In order to avoid contact noise between specimen and reverberation room floor, a pad of closed-cell polyurethane foam was laid underneath. One pump was fixed in the provided backpack and could be operated from the front pocket. Correspondingly, the test was carried out with intended operation inside the backpack. Comparatively the measurement was executed with open and with closed front pocket of the backpack. The suction bottles were placed next to the backpack.

For all tests, the operating state of the pumps was controlled before and after the test in terms of noise caused by the setup (rattling noise of the pump as a result of hoses lying loose on the pump or noise of the mounting base, or similar; air sucked in due to improperly positioned or slipped off artificial breast, etc.). Therefore, an influence by corresponding sounds on the measurements used for the determination of the sound pressure levels can be excluded.

Appendix B shows photos of the test arrangement.

4 Execution of the tests

The tests were carried out on 23rd May 2014 between 18:00 h und 23:00 h as well as on 17th February 2015 between 14:00 h and 16:00 h in the reverberation room of Müller-BBM GmbH, Planegg.

The climatic conditions during the tests are described in the test certificates in Appendix A.

The test method and the test equipment used are documented in Appendix D.

5 Evaluation

The evaluation of the measurement results was effected in third-octave bands (100 Hz ... 10000 Hz) according to the specifications in DIN EN ISO 3741 [2]. The detailed procedure is described in Appendix D. From the sound pressure levels in octave bands the sound pressure levels in octaves (125 Hz ... 8000 Hz) as well as the A-weighted sound power levels L_{WA} were calculated.

6 Test results

The determined sound power levels in one third-octave bands are contained in the result tables in Appendix C. In the result sheets in Appendix A, the sound power levels summarized in octave bands as well as the A-weighted sound power levels L_{WA} are listed.

Table 1 shows the comparison between the A-weighted sound power levels L_{WA} determined for all pumps tested.

Test No. / test certificat e Appendix A, Page	Manufacturer / type	Serial No.	Mode tested	Cycle frequency [min ⁻¹]	L _{WA} [dB]
1	Ardo / Calypso	14621129	single	52	46.0
2	Medela / Freestyle™	F20134300130	single	50	57.8
3	Medela / Swing™	G20140302318	single	47	55.1
4	Philips / AVENT SCF 332	0238978	single	45	55.1
5	Lansinoh [®] / Affinity Pro™	SN0172	single	50	55.6
6	Ameda / Purely Yours™ (bgl. Ameda / Lactaline)	24502082	single	48	55.1
7	Ardo / Calypso Double Plus	14621129	double	52	46.4
8	Medela / Freestyle	F20134300130	double	50	58.0
9	Lansinoh [®] / Affinity Pro™	SN0172	double	50	56.6
10	Ameda / Purely Yours™ (bgl. Ameda / Lactaline)	24502082	double	48	54.9
11	Medela / Swing Maxi™	M20140500034	double	46	49.6
12	Philips / AVENT SCF 334	0045539	double	45	56.6
13	Medela / Pump In Style [®] Advanced	P1402851050	single/ backpack open	56	51.8
14	Medela / Pump In Style [®] Advanced	P1402851050	single/ backpack closed	56	48.9

Table 1. Overview of examined pumps and test results: A-weighted sound power levels L_{WA} .

Test No. / test certificat e Appendix A, Page	Manufacturer / type	Serial No.	Mode tested	Cycle frequency [min ⁻¹]	L _{WA} [dB]
15	Medela / Pump In Style [®] Advanced	P1402851050	double/ backpack open	56	52.9
16	Medela / Pump In Style [®] Advanced	P1402851050	double / backpack closed	56	50.0

The requirements of DIN ISO 3741 [2] in terms of background noise criteria acc. to sections 5.4.1.1 and 5.4.1.2 could not be complied with in all frequency bands. If applicable, the respective sound levels in the test certificates and in the result tables in Appendix C are marked accordingly.

However, the relative criterion for the determination of the A-weighted sound power level acc. to sect. 5.4.1.3 of DIN ISO 3741 [2] is met in all tests carried out. It may therefore be assumed that the A-weighted sound power level of the background noise criteria calculated from the data of all frequency bands complies with the standard.

7 Remarks

The test results exclusively relate to the investigated subjects and conditions described.

Ph. Mustra

M. Eng. Philipp Meistring

This test report may only be published, shown or copied as a whole, including its appendices. The publishing of excerpts is only possible with prior consent of Müller-BBM.

Durch die DAkkS Deutsche Akkreditierungsstelle GmbH nach DIN EN ISO/IEC 17025 akkreditiertes Prüflaboratorium. Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüfverfahren.

Sound power levels of noise sources ISO 3741 Precision methods for reverberation rooms

Client: Ardo medical AG Gewerbestraße 19, 6314 Unterägeri, Switzerland Noise source under test: Single pump type Medela FreestyleTM Description of the test object: Type of product: consumer vacuum breast-pump • Mode: single pump Medela / Freestyle I M Manufacturer / type: F20134300130 Serial No.: • Type of pump: membrane pump Cycle: not variable • Vacuum performance: variable in 9 steps Operating conditions during test: • Vacuum performance: full load (step 9, maximum power), suction mode • Cycle: 50/min Test set-up: Generation of vacuum via suction bottle with artificial breast • Suction bottle without additional soft inlays (only hard plastic shell) Test set-up acc. to ISO 3741 on the reverberation room floor A-weighted sound power level 60 50 A-weighted sound power level L_{WA}/ dB Room: E Volume: 199.60 m³ 40 Surface of room: 216.00 m² Date of test: 2014-05-23 $\theta = 22.5 \ ^{\circ}C$ r. h. = 48.6 % 30 B = 94.8 kPa Frequency L_{WA} octave 1/3 octave [Hz] [dB] 125 0 45.9 20 250 51.7 500 55 4 1000 46.8 2000 43.7 4000 0 34.6 8000 • 32.7 10 250 500 1000 2000 4000 8000 • minimum value, dominated by background noise 125 value corrected for background noise Frequency f / Hz Rating according to ISO 3741: A-weighted sound power level $L_{WA} = 57.8 \text{ dB}$ Planegg, 2015-03-05 Appendix A MÜLLER-BBM No. of test report M112237/1 Page 2

Sound power levels of noise sources ISO 3741 Precision methods for reverberation rooms **Client:** Ardo medical AG Gewerbestraße 19, 6314 Unterägeri, Switzerland Noise source under test: Single pump type Medela SwingTM Description of the test object: Type of product: consumer vacuum breast-pump • Mode: single pump Medela / Swing I M Manufacturer / type: G20140302318 Serial No.: • Type of pump: membrane pump Cycle: frequency not variable • Vacuum performance: variable in 11 steps Operating conditions during test: • Vacuum performance: full load (step 11, maximum power), suction mode • Cycle: 47/min Test set-up: Generation of vacuum via suction bottle with artificial breast • Suction bottle without additional soft inlays (only hard plastic shell) Test set-up acc. to ISO 3741 on the reverberation room floor A-weighted sound power level 60 50 A-weighted sound power level L_{WA}/ dB Room: E Volume: 199.60 m³ 40 Surface of room: 216.00 m² Date of test: 2014-05-23 $\theta = 22.5 \ ^{\circ}C$ r. h. = 49.5 % 30 B = 94.8 kPa Frequency L_{WA} octave 1/3 octave [Hz] [dB]

125 •

250

500

1000

2000

4000 0

8000 0

37.4

42.0

514

51.6

41.4

39.6

33.5

value corrected for background noise

Rating according to ISO 3741:

MÜLLER-BBM

• minimum value, dominated by background noise 125

Bau4(v1,7,0,0) - R:\BAU\Pruefst\Bau4Data\112\112237\2014-05-23 Einfachpumpen E\112237_2014-05-23 Einfachpumpen E_4.mb4: 01.04.2015

20

10

250

A-weighted sound power level $L_{WA} = 55.1 \text{ dB}$

No. of test report M112237/1

Planegg, 2015-03-05

500

1000

2000

4000

Frequency f / Hz

Appendix A

Page 3

8000

Bau4(v1,7,0,0) - R:\BAU\Pruefst\Bau4Data\112\112237\2014-05-23 Einfachpumpen E\112237_2014-05-23 Einfachpumpen E_5.mb4: 01.04.2015

Bau4(v1,7,0,0) - R:\BAU\Pruefst\Bau4Data\112\112237\2014-05-23 Einfachpumpen E\112237_2014-05-23 Einfachpumpen E_7.mb4: 01.04.2015

Bau4(v1,7,0,0) - R:\BAU\Pruefst\Bau4Data\112\112237\2014-05-23 Doppelpumpen E\112237_2014-05-23 Doppelpumpen E_2.mb4: 01.04.2015

Sound power levels of noise sources ISO 3741 Precision methods for reverberation rooms

Client:	Ardo medical AG Gewerbestraße 19, 6314 Unterägeri, Switzerland									
Noise source under test:	Double pump type Medela Freestyle TM									
Description of the test object • Type of product: • Mode: • Manufacturer / type: • Serial No.: • Type of pump: • Cycle: • Vacuum performance:	: consumer vacuum breast-pump double pump Medela / Freestyle TM F20134300130 membrane pump not variable variable in 9 steps									
Operating conditions during test: • Vacuum performance: full load (step 9, maximum power), suction mode • Cycle: 50/min										
Test set-up: • Generation of vacuum via suction bottles with artificial breasts • Suction bottle without additional soft inlays (only hard plastic shell) • Test set-up acc. to ISO 3741 on the reverberation room floor										
Room: E Volume: 199.60 m ³ Surface of room: 216.00 m ² Date of test: 2014-05-23 $\theta = 22.4 \text{ °C}$ r. h. = 50.6 % B = 94.8 kPa Frequency L_{WA} octave 1/3 octave [Hz] [dB] 125 46.1 250 51.9 500 55.6 1000 47.2 2000 43.2 4000 • 34.6 8000 • 34.4 • minimum value, dominated by ba • value corrected for background n	741									
MÜLLER-B	BM Planegg, 2015-03-05 Appendix A									
	No. of test report M112237/1 1/ / Litter Page 8									

Bau4(v1,7,0,0) - R:\BAU\Pruefst\Bau4Data\112\112237\2014-05-23 Doppelpumpen E\112237_2014-05-23 Doppelpumpen E_5.mb4: 01.04.2015

Bau4(v1,7,0,0) - R:\BAU\Pruefst\Bau4Data\112\112237\2014-05-23 Doppelpumpen E\112237_2014-05-23 Doppelpumpen E_6.mb4: 01.04.2015

S:\M\Proj\112\M112237\M112237_01_PBE_3E.DOC:01.04.2015

Bau4(v1,7,0,0) - R:\BAU\Pruefst\Bau4Data\112\112237/2014-05-23 Doppelpumpen E\112237_2014-05-23 Doppelpumpen E_7.mb4: 01.04.2015

S:\M\Proj\112\M112237\M112237_01_PBE_3E.DOC: 01. 04. 2015

Bau4(v1,7,0,0) - R:\BAU\Pruefst\Bau4Data\112\112237\2015-02-17 Einfachpumpen E\112237_2015-02-17 Einfachpumpen E_1.mb4: 01.04.2015

S:\M\Proj\112\M112237\M112237_01_PBE_3E.DOC: 01. 04. 2015

Bau4(v1,7,0,0) - R:\BAU\Pruefst\Bau4Data\112\112237/2015-02-17 Einfachpumpen E\112237_2015-02-17 Einfachpumpen E_2.mb4: 01.04.2015

Bau4(v1,7,0,0) - R:\BAU\Pruefst\Bau4Data\112\112237\2015-02-17 Doppelpumpen E\112237_2015-02-17 Doppelpumpen E_1.mb4: 01.04.2015

S:\M\Proj\112\M112237\M112237_01_PBE_3E.DOC: 01. 04. 2015

Bau4(v1,7,0,0) - R:\BAU\Pruefst\Bau4Data\112\112237\2015-02-17 Doppelpumpen E\112237_2015-02-17 Doppelpumpen E_2.mb4: 01.04.2015

Appendix B

Pictures

Figure B.1. Reverberation room and test position without test object.

Figure B.2. Test position on the reverberation room floor without test object.

Figure B.3. Test arrangement on the reverberation room floor.

Figure B.4. Suction bottle with fixed artificial brest.

Figure B.5. Test No. 1: Ardo Calypso (single pump).

Figure B.6. Test No. 2: Medela Freestyle™ (single pump).

Figure B.7. Test No. 3: Medela Swing[™] (single pump).

Figure B.8. Test No. 4: Philips AVENT (single pump).

M112237/01 MSG/JRE 2015-03-05

Figure B.9. Test No. 5: Lansinoh[®] Affinity Pro[™] (single pump).

Figure B.10. Test No. 6: Ameda Purely Yours™ (single pump).

Figure B.11. Test No. 7: Ardo Calypso Double Plus (double pump).

Figure B.12. Test No. 8: Medela Freestyle™ (double pump).

Figure B.13. Test No. 9: Lansinoh[®] Affinity Pro™ (double pump).

Figure B.14. Test No. 10: Ameda Purely Yours™ (double pump).

Figure B.15. Test No. 11: Medela Swing Maxi[™] (double pump).

Figure B.16. Test No. 12: Philips AVENT (double pump).

M112237/01 MSG/JRE 2015-03-05

Figure B.17. Test No. 13: Medela Pump In Style[®] Advanced (single pump, backpack open).

Figure B.18. Test No. 14: Medela Pump In Style[®] Advanced (single pump, backpack closed).

Figure B.19. Test No. 15: Medela Pump In Style[®] Advanced (double pump, backpack open).

Figure B.20. Test No. 16: Medela Pump In Style[®] Advanced (double pump, backpack closed).

Result tables

The markings in the following tables signify:

Column "Corr.": background noise correction

without no influence of background noise $\Delta L_p \ge 15 \text{ dB}$; $K_{1i} = 0 \text{ dB}$

- *Measurement value influenced by background noise:
100 Hz...200 Hz und ≥ 6300 Hz:
250 Hz...5000 Hz:6 dB ≤ ΔL_p < 15 dB; K_{1i} = 0.0...1.3 dB
10 dB ≤ ΔL_p < 15 dB; K_{1i} = 0.0...0.5 dB**Measurement value determined by background noise (minimum value):
- 100 Hz...200 Hz und \geq 6300 Hz: $\Delta L_p < 6$ dB; $K_{1i} = 1.3$ dB (= max.)250 Hz...5000 Hz: $\Delta L_p < 10$ dB; $K_{1i} = 0.5$ dB (= max.)

Column "Crit.": Compliance with relative criterion

without Relative criterion acc. to 5.4.1.1 and 5.4.1.2 of ISO 3741 [2] complied with

n. c. Relative criterion acc. to 5.4.1.1 and 5.4.1.2 of ISO 3741 [2] not complied with.

Froquopov	Test No. 1			Test No. 2		Test No. 3			Test No. 4			
Frequency	L _W	Corr.	Crit.	Lw	Corr.	Crit.	Lw	Corr.	Crit.	Lw	Corr.	Crit.
100	15.7	**		38.0			20.2	**		29.9	*	
125	14.3	**		27.3	*		22.9	*		39.7		
160	11.6	**		45.0			37.2			25.7	*	
200	16.6	**		44.9			31.7	*		34.0	*	
250	21.0	**		48.3			39.1			47.8		
315	29.2	*		47.0			37.9			43.7		
400	34.1			50.8			44.9			47.8		
500	38.8			52.5			45.8			42.1		
630	36.3			46.8			48.4			43.4		
800	31.9	*		44.3			48.5			39.8		
1000	38.3			41.4			47.6			43.9		
1250	38.4			38.7			41.7			39.6		
1600	35.0			39.9			39.3			41.6		
2000	33.2	*		40.7			36.0			44.4		
2500	29.6	*		32.3	*		31.5	*		42.3		
3150	30.1	*		32.2	*		34.6			38.8		
4000	25.6	**	n. c.	28.7	*		36.3			36.8		
5000	24.4	**	n. c.	26.6	**		32.9	*		33.5	*	
6300	25.5	**	n. c.	29.2	*		27.5	*		34.8	*	
8000	24.0	**	n. c.	27.8	*		28.6	*		35.6	*	
10000	23.8	**		26.3	**		30.0	*		34.9	*	

Table C.1. Tests Nos. 1 to 4 (test certificates Appendix A, pages 1 to 4): Determined sound power levels L_W in third-octave bands in dB(A).

Fraguanay	Test No. 5		Test No. 6		Test No. 7			Test No. 8				
Frequency	Lw	Corr.	Crit.	Lw	Corr.	Crit.	Lw	Corr.	Crit.	Lw	Corr.	Crit.
100	16.5	**		15.4	**		18.4	**		42.2		
125	14.0	**		11.7	**		16.3	**		29.5	*	
160	21.1	*		16.9	**		14.6	**		43.7		
200	28.8	*		17.9	**		15.8	**		45.0		
250	49.0			32.2	*		19.8	**		48.2		
315	43.7			34.6	*		29.1	*		47.5		
400	35.5			43.7			32.9	*		50.7		
500	48.4			44.4			39.5			52.7		
630	43.2			43.7			39.5			47.7		
800	43.1			43.5			36.1			44.9		
1000	43.4			47.2			38.0			41.7		
1250	49.8			49.9			37.3			38.7		
1600	43.5			45.2			34.2			40.2		
2000	33.2	*		40.9			31.9	*		39.8		
2500	32.3	*		36.2			29.4	*		31.1	*	
3150	32.7	*		35.8			28.9	*		31.5	*	
4000	29.8	*		40.6			25.5	**	n. c.	30.2	*	
5000	27.4	**		36.4	*		23.9	**		26.7	**	
6300	27.2	*		30.1	*		24.0	**		30.3	*	
8000	26.6	**		31.5	*		22.3	**		30.4	*	
10000	26.8	**		30.5	*		23.1	**		27.9	**	

Table C.2.	Tests Nos.5 to 8 (test certificates Appendix A, pages 5 to 8):	
Determine	d sound power levels L_{W} in third-octave bands in dB(A).	

Fraguanay	Test No. 9			Test No. 10			Test No. 11			Test No. 12		
Frequency	Lw	Corr.	Crit.	Lw	Corr.	Crit.	Lw	Corr.	Crit.	Lw	Corr.	Crit.
100	17.1	**		14.9	**		20.6	**		37.3	*	
125	14.6	**		10.8	**		30.0	*		40.9		
160	21.6	*		13.8	**		38.3			27.0	*	
200	29.6	*		18.1	**		37.4			37.7		
250	50.0			28.0	*		36.6			46.2		
315	44.6			34.4	*		40.8			51.1		
400	34.4			44.7			36.2			48.6		
500	48.0			44.4			33.6			41.3		
630	44.3			43.3			36.6			40.5		
800	44.2			45.2			39.1			42.1		
1000	44.7			46.7			42.3			46.1		
1250	51.5			49.3			38.8			42.4		
1600	44.8			44.9			33.8			39.3		
2000	33.4	*		40.7			35.1			41.3		
2500	35.4			34.7			31.8	*		43.3		
3150	33.8	*		35.1			34.9			41.4		
4000	30.2	*		38.9			36.9			38.4		
5000	27.7	**		35.5	*		31.9	*		39.5		
6300	28.3	*		29.0	*		27.1	*		40.2	*	
8000	27.8	*		31.7	*		27.2	*		35.3	*	
10000	28.7	*		29.1	*		25.9	**		35.9	*	

Table C.3.	Test Nrs.9 to	12 (test	certificates	Appendix A	, pages 9 to	o 12):
Determined	sound power	levels L	w in third-o	ctave bands	in dB(A).	

Froguopov	Test No. 13			Test No. 14		Test No. 15			Test No. 16			
Frequency	L_{W}	Corr.	Crit.	Lw	Corr.	Crit.	Lw	Corr.	Crit.	Lw	Corr.	Crit.
100	13.3	**		12.3	**		14.0	**		12.5	**	
125	14.5	**		14.6	**		14.8	**		14.1	**	
160	17.5	*		18.3	*		19.0	*		17.8	*	
200	23.8	*		26.3	*		23.3	*		25.9	*	
250	30.6	*		29.6	*		32.4	*		31.8	*	
315	34.0	*		32.8	*		35.0	*		34.8	*	
400	42.2			39.4			43.2			40.3		
500	46.8			43.8			47.2			44.6		
630	45.3			42.6			45.9			43.1		
800	38.6			36.8			41.9			39.3		
1000	41.5			38.9			42.7			40.1		
1250	39.5			36.7			40.9			38.0		
1600	39.7			35.8			42.4			38.2		
2000	36.3			29.8	*		38.4			31.6	*	
2500	33.8			26.7	*		35.3			28.4	*	
3150	27.0	*		19.4	**		28.6	*		21.5	*	
4000	24.8	*		22.2	**		23.3	*		17.9	**	
5000	25.3	*		20.2	**		25.7	*		18.0	**	
6300	24.4	*		19.3	**		22.2	**		17.8	**	
8000	25.1	*		18.1	**		24.3	*		17.5	**	
10000	28.2	*		18.9	**		28.9	*		18.2	**	

Table C.4. Test Nrs. 13 to 16 (test certificates Appendix A, pages 13 to 16): Determined sound power levels L_W in third-octave bands in dB(A).

Description of the test procedure for the determination of the sound power level

1 Measurand

The measurement of the sound power level was performed following the direct procedure according to DIN EN ISO 3741 [2]. The sound power level was determined in one third-octave bands. The calculation of the sound power level L_W was calculated using the following equation:

$$L_{W} = \overline{L_{p(ST)}} + \left\{ 10 \lg \frac{A}{A_{0}} dB + 4,34 \frac{A}{S} dB + 10 \lg \left(1 + \frac{S \cdot c}{8 \cdot V \cdot f} \right) dB + C_{1} + C_{2} - 6 dB \right\}$$

With:

 $L_{p(ST)}$ mean value of the corrected time-averaged one third-octave band sound

pressure levels of the sound sources to be examined in operation in the reverberation room in $\ensuremath{\mathsf{dB}}$

- A equivalent sound absorption area in the reverberation room in m²
- *A*₀ 1 m²
- S total surface of the reverberation room in m²
- *c* sound-propagation velocity at the air temperature prevailing in the reverberation room at the time of measurement in m/s
- V volume of the reverberation room in m³
- f one third-octave band centre frequency in Hz
- C_1 correction to take account of the different reference parameters of the sound pressure and sound power levels in function of the characteristic acoustic impedance of the air in the reverberation room at the time of measurements in dB
- C_2 correction of the radiation impedance in dB

Information regarding the measurement uncertainty of the measurement procedure is given in DIN EN ISO 3740 [1] and DIN EN ISO 3741 [2].

2 Description of the reverberation room

The reverberation room of Müller-BBM GmbH in Planegg complies with the requirements defined in DIN ISO 3741 [2].

The reverberation room has a volume of $V = 199.6 \text{ m}^3$ and a surface area of $S = 216 \text{ m}^2$. Thus it is possible according to section 5.2 of DIN ISO 3741 [2] to perform measurements starting from and including the one third-octave band of the centre frequency 100 Hz.

In order to increase diffusivity, six composite sheet metal boards dimensioned 1.2 m x 2.4 m and six composite sheet metal boards dimensioned 1.2 m x 1.2 m were suspended curved and irregularly

Floor plan ←В 250 305 8020 Room E **↑** A Î A 2460 2460 ₩B Section A-A 3780 Ø V Section B-B K 3780 2460 <u>77777</u> M \overline{V} dimensions in mm

Figure D.1 shows drawings of the reverberation room.

S:\M\Proj\112\M112237\M112237_01_PBE_3E.DOC : 01. 04. 2015

6600

3 Measurement of the sound pressure level

The measurement of the average sound pressure level $L'_{pi(ST)}$ was performed with *i* = 2 single microphones by continuous scanning using moved microphones on circular paths. The path radius of the microphones was 1.0 m. The minimum distances between the microphone positions were as follows:

- 1.5 m between each microphone position and the test object;
- 1.0 m between each microphone position and the surfaces of the reverberation room;
- 0.5 m between each microphone position and the diffusors.

The path levels were inclined by at least 10° compared to all room surfaces.

The chosen measurement duration of 45 s corresponds to two complete circuits of the measurement paths.

The sound pressure level was registered in one third-octave bands (100 Hz...10000 Hz).

The test was performed for one source position at a time (position of the test object on the floor of the reverberation room).

The required minimum path length of the microphone paths and the necessary number of source positions were qualified acc. to section 8.4.2, DIN EN ISO 3741 [2].

4 Background noise correction

The time-averaged sound pressure level of the background noise was determined on the same microphone paths and with the same measurement duration as in the measurements with sound source.

The background noise correction $K_{1,i}$ was determined according to section 9.1 of DIN EN ISO 3741 [2]. In the result tables in Appendix C and in the test certificates in Appendix A, the results are marked if a correction due to background noise was done.

5 Absorption area in the reverberation room

The equivalent sound absorption area A of the reverberation room was determined by measuring the reverberation time T following the indirect procedure according to DIN EN ISO 3382-2 [3] using the following equation:

$$A = \frac{55,26}{c} \left(\frac{V}{T}\right)$$

With

- *A* equivalent sound absorption area in the reverberation room in m²
- *c* sound-propagation velocity in m/s at the air temperature prevailing in the reverberation room at the time of measurement
- V volume of the reverberation room in m³

The determination of the impulse responses was carried out following the indirect procedure in the reverberation room without test object. In terms of test signal, a sine-sweep with a pink spectrum was used. 24 independent loudspeaker-microphone combinations were registered. The evaluation of the reverberation time was carried out acc. to DIN EN ISO 3382-2 [3], whereby a linear regression was used to calculate the reverberation time *T* from the level of the inverse impulse response.

6 Test equipment

The calibration of the measurement instruments used was controlled by means of the pistonphone at the beginning of the measurements. At the end of measurement, the constancy of the calibration was checked and confirmed. Within the scope of our own quality assurance system, the equipment is additionally inspected and controlled in regular intervals.

In Table D.1 the test equipment used is listed.

Name	Manufacturer	Туре	Serial-No.								
Reverberation time measurement											
Sound card	RME	Multiface II	22460388								
Amplifier	APart	Champ One	09070394								
Dodecahedron	Müller-BBM	DOD130B	265201								
Dodecahedron	Müller-BBM	DOD130B	265202								
Dodecahedron	Müller-BBM	DOD130B	265203								
Dodecahedron	Müller-BBM	DOD130B	265204								
Microphone	Microtech	M360	1783								
Microphone	Microtech	M360	1785								
Microphone	Microtech	M360	1786								
Microphone	Microtech	M360	1787								
Microphone	Microtech	M360	1788								
Microphone	Microtech	M360	1789								
Sound	pressure level mea	surements	•								
Measuring system	Norsonic	121	26342								
Microphone swivel facility	Norsonic	212	12986								
Microphone swivel facility	Norsonic	212	12987								
Pre-amplifier microphone with free-field microphone	Norsonic Norsonic	1201 1220	26145 25160								
Pre-amplifier microphone	Norsonic	1201	30588								
with free-field microphone	Norsonic	1220	26071								
Pistonphon	Brüel & Kjaer	4228	1651956								
Measure	ement of the climati	c conditions									
Hygro-/thermometer	Testo	Saveris H1E	01554624								
Barometer	Lufft	Opus 10	030.0910.0003.9. 4.1.30								
	Software										
Software for measurement and evaluation	Müller-BBM	Bau 4	Version 1.7								

Table D.1. Test equipment.